
Hardware Caches and Optimization
Lukas Waymann

2017-06-27

Typical present-day CPUs have two or more levels of caches. This article
provides basic insight into their operation and presents key architectural
properties which suggest possible program optimizations.

The abstract external memory model (EMM) for memory hierarchies and
the cache-oblivious model (COM) derived from it are presented briefly.

1

Contents
1 Introduction 3

2 Motivation 3

3 Cache Operation Overview 3

4 Types of CPU Caches 4

5 Key Concepts 6
5.1 Cache Line . 6
5.2 Prefetching . 7
5.3 Locality of Reference . 8

5.3.1 Temporal Locality . 9
5.3.2 Spatial Locality . 9
5.3.3 Notes . 9

6 Example: std::vector vs. std::list 9
6.1 Notes . 10

6.1.1 “True” OO Style . 10

7 Abstract? 11
7.1 External Memory Model . 11

7.1.1 Limitations . 12
7.2 Cache-Oblivious Model . 12

7.2.1 Cache-Oblivious Matrix Transposition 13

Appendix A Reading Information About the CPU 16

Appendix B Profiling Methodology 16
B.1 Measuring CPU cycles . 16

Appendix C Data 17

Acronyms 19

References 19

2

1 Introduction
A hardware cache is a comparatively fast and small physical memory. It stores a subset
of the data present in slower, larger storage that is expected to be used again soon. The
purpose of this additional memory is to reduce the number of accesses to the underlying
slower storage.
There are fundamental reasons that having one single, uniform type of memory is

not viable. No signal can propagate faster than the speed of light. Thus, every storage
technology can only reach a finite amount of data within a desired access latency [12,
p. 2].

The most ubiquitous example for hardware caches is the hierarchy of CPU caches that
are found on almost all present-day CPUs. They are designated L1 cache, L2 cache, and
so on, with L1 being the fastest and smallest level. The underlying storage for CPU
caches is the main memory.
There are more storage levels that comprise the memory hierarchy of a computer

along with CPU caches and main memory. For example hard disk drives (HDDs) and
solid-state drives (SSDs). However, swapping to HDDs and SSDs continues to become
somewhat less common as main memory sizes increase. Even non-server systems can
currently support 64 GiB of main memory, eliminating the need for swapping to disk
under many workloads.
I will focus on how to use CPU caches effectively and the enabled performance gains

in this article.

2 Motivation
Hardware caches are managed by hardware directly. They are generally opaque to the
operating system and other programs. That is, software has no direct control over the
contents of a hardware cache.
Despite this, two algorithms solving the same problem with the same asymptotic

complexity (in the same Θ(g(n))) may differ in performance by two orders of magnitude
because of different memory access patterns [9]. We will see an example of this in
section 6.

In a nutshell, hardware caches are ubiquitous but the performance gains they provide
are conditional. Effective use of hardware caches requires knowledge about how they
work. Algorithms must be designed and implemented observing this knowledge.

3 Cache Operation Overview
Whenever a program requests a memory address the CPU will search its caches. If the
location is present, a cache hit occurs. Otherwise, the result is a cache miss and the next
level of the memory hierarchy, which could be another CPU cache, is tried.
Unless explicitly prevented, the CPU brings all accessed data into cache (with some

exceptions only relevant to OS programming) [3, p. 15]. This happens in response to

3

cache misses and will, much more often than not, cause another cache entry to be evicted
and replaced [3, p. 16].

4 Types of CPU Caches
Current x86 CPUs generally have three main types of caches: data caches, instruction
caches, and translation lookaside buffers (TLBs) [13, 11:07]. Some caches are used for
data as well as instructions and are called unified. [3, p. 20]. A processor may have
multiple caches of each type, which are organised into numerical levels starting at 1, the
smallest and fastest level, based on their size and speed.
In practice, a currently representative1 x86 cache hierarchy consists of:

• Separate level 1 data and instruction caches of 32 to 64 KiB for each core (denoted
L1d and L1i by Drepper [3, pp. 14–15]). Machine instructions in L1i are already
decoded [3, pp. 31, 56].

• A unified L2 cache of 256 to 512 KiB for each core.
• Often a unified L3 cache of 2 to 16 MiB shared between all cores.
• One or more TLBs per core. They cache virtual-to-physical address associations of

memory pages.

Estimates of typical access latencies are given by Ignatchenko [8].2

L1d L2 L3 Main Memory
Cycles 3–4 10–12 30–70 100–150

The biggest target for optimizations is the data cache. “[Instruction] cache is much less
problematic” [3, p. 31] and optimizations for data and instruction cache tend to improve
TLB usage as well [13, 11:53].

My laptop’s AMD E-450 CPU has cores with an L1d cache of 32 KiB and a unified
L2 cache of 512 KiB each.3 We can both verify these sizes and get a reasonably good
measure of the access times by profiling listing 1 for different values of SIZE.4 This
program repeatedly reads elements from a thusly sized array in random order. To do this
with minimal overhead, the array is first set up as a circular, singly linked list where every
element except the last points to a random successor. When compiled with -DBASELINE,
only this initialization is done.
We use random accesses because the CPU will detect and optimize sequential access

by a technique called prefetching discussed in section 5.2, which would prevent us from
determining access times.

1E.g. for AMD Family 14h processors [1, pp. 30–32], AMD Zen (17h) [17], and Intel Skylake desktop
processors [10, figure 2-1, table 2-4]

2Intel [10, table 2-4], Meyers [13, 17:52, slide 18], Meyer, Sanders, and Sibeyn [12, pp. 2–3, 171], and
Drepper [3, pp. 16, 20–21] all give comparable numbers for various architectures.

3Appendix A explains how to obtain this information.
4Appendix B.1 details how.

4

https://youtu.be/WDIkqP4JbkE?t=11m07s
https://youtu.be/WDIkqP4JbkE?t=11m53s
https://youtu.be/WDIkqP4JbkE?t=17m52s

#define N 100000000 // 100 million

struct elem {
struct elem *next;

} array[SIZE];

int main() {
for (size_t i = 0; i < SIZE - 1; ++i) array[i].next = &array[i + 1];
array[SIZE - 1].next = array;
// Fisher-Yates shuffle the array.
for (size_t i = 0; i < SIZE - 1; ++i) {

size_t j = i + rand() % (SIZE - i); // j is in [i, SIZE).
struct elem temp = array[i]; // Swap array[i] and array[j].
array[i] = array[j];
array[j] = temp;

}
#ifndef BASELINE

int64_t dummy = 0;
struct elem *i = array;
for (size_t n = 0; n < N; ++n) {

dummy += (int64_t)i;
i = i->next;

}
printf("%d\n", dummy);

#endif
}

Listing 1: Randomly Read Array Elements

Figure 1 shows the extra CPU cycles used by listing 1 in addition to the BASELINE
version for different array sizes. That is, only the cycles used by the main loop are given,
not those for initialization. I divided by N to get the cycles spent per loop iteration.
Up to 32 KiB, each access takes almost exactly 3 cycles.5 This is the L1d access

time. At 32 KiB (the size of the L1d) the time increases to about 3.4 cycles. This is not
surprising since the cache is shared with other processes and the operating system, so
some of our data gets evicted. The first dramatic increase happens at 64 KiB followed by
smaller increases at 128 and 256 KiB. I suspect we are seeing a mixture of L2 and L1d
accesses, with less and less L1d hits and an L2 access time around 25 cycles.

The values from 512 KiB (the size of the L2) to 128 MiB exhibit a similar pattern. The
relative increase when the array size matches that of the L2 is greater than for the L1d
before; possibly because L2 is a unified cache that also holds instructions. Eventually,

5The numerical results are shown in table 1 on page 17.

5

2 8 128 2048 8192 32 768 131 07232 512
0

25

50

75

100

125

150

175

Array Size (KiB)

C
yc
le
s
/
It
er
at
io
n

Figure 1: Access Times for Random Reads

more and more accesses go to main memory, causing delays of up to 200 cycles [cf. 3,
p. 17, figure 3.4].
The data suggests that keeping the working set a process uses during a time interval

small can yield dramatic performance improvements.

5 Key Concepts
Some architectural properties of hardware caches lead to important concepts for using
them effectively.

5.1 Cache Line
Cache lines or cache blocks are the unit of data transfer between main memory and cache.
They have a fixed size, which has been “64 bytes for many years” on x86/x64 CPUs [7,
13, 21:41].6 This means accessing a single uncached 32-bit integer entails loading another
60 adjacent bytes.

My E-450 CPU is no exception and both of its data caches have 64-byte cache lines.7
We can verify this quite easily. Consider listing 2. It loops over an array with an increment
given at compile time as STEP and measures the processor time.

6Line sizes aren’t necessarily identical among a CPU’s caches. The Intel Pentium 4 processor had an
L1d cache with “64 bytes per cache line” [6, p. 9] but an L2 cache with “128 bytes per cache line” [6,
p. 11].

7See Appendix A.

6

https://youtu.be/WDIkqP4JbkE?t=21m41s

#define SIZE 67108864 // 64 * 1024 * 1024. The array will be 512 MiB.

int main() {
int64_t* array = (int64_t*)calloc(SIZE, sizeof(int64_t));
clock_t t0 = clock();
for (size_t i = 0; i < SIZE; i += STEP) {

array[i] &= 1; // Do something. Anything.
}
clock_t t1 = clock();
printf("%d %f\n", STEP, 1000. * (t1 - t0) / CLOCKS_PER_SEC);

}

Listing 2: Loop over array with Increment STEP

The results for different values of STEP are plotted in fig. 2. As expected, the time roughly
halves whenever the step size is doubled — but only from a step size of 16. For the first
4 step sizes, it is almost constant.

This is because the run times are primarily due to memory accesses. Up to a step
size of 8, every 64-byte line has to be loaded. At 16, the values we modify are 128 bytes
apart,8 so every other cache line is skipped. At 32, three out of four cache lines are
skipped, and so on [cf. 14, example 2].
Both cache and main memory can be thought of as being partitioned (in the set-

theoretic sense) into cache lines. Data is not read or written starting from arbitrary main
memory addresses, but only from addresses that are multiples of the cache line size.

5.2 Prefetching
Consider a simplified version of listing 1 that, instead of using random accesses, simply
walks over the array sequentially. It still follows the pointers to do this, but the array
is no longer shuffled. The results of profiling this new program as listing 1 before are
plotted in fig. 3.9
Until the working set size matches that of the L1d, the access times are virtually

unchanged at 3 cycles, but exceeding the L1d and hitting the L2 increases this by no
more than a single cycle. More strikingly, exceeding the L2 has similarly limited effect.
The access time plateaus not much above 6 cycles — about 3 % of the maximum we saw
for random reads. Much of this can be explained by the improved use of cache lines: the
penalty of loading a cache line is distributed among 8 accesses now. This could at best
get us down to 12.5 %. The missing improvements are due to prefetching.
Prefetching is a technique by which CPUs predict access patterns and preemptively

push cache lines up the memory hierarchy before the program needs them. This can

816 int64_t values of 8 bytes each
9Table 2 on page 17 shows the numerical results.

7

1 2 4 8 16 64 256 1024

5

10

20

40

80

160

320

Step Size

Pr
oc
es
so
r
T
im

e
(m

s)

Figure 2: Processor Times for Running Listing 2

not work unless cache line access is predictable, though, which basically means linear [3,
p. 60].10

Prefetching happens asynchronously to normal program execution [3, p. 14] and can
therefore almost completely hide the main memory latency [3, p. 23]. This is not quite
what we observe in fig. 3 because the CPU performs little enough work for memory
bandwidth to become the bottleneck. Adding some expensive operations like integer
divisions every loop iteration changes that and effectively levels the cycles spend per
iteration across all working set sizes.11

What I described so far is hardware prefetching. It uses dedicated silicon to automat-
ically detect access patterns. There is also software prefetching, which is triggered by
special machine instructions that may be inserted by the compiler or manually by the
programmer. Software prefetching is discussed in [3].

5.3 Locality of Reference
Two properties exhibited by computer code to varying degrees distinctly impact cache
effectiveness: these are spatial locality and temporal locality. Both are measures of how
well the code’s memory access pattern matches certain principles.

10As an example, the most complicated stride pattern my laptop’s CPU can detect is one that skips over
at most 3 cache lines (for- or backwards) and may alternate strides (e.g. +1, +2, +1, +2, . . .) [1,
p. 278].

11See fig. 6 on page 18.

8

2 8 128 2048 8192 32 768 131 07232 512
0

1

2

3

4

5

6

Array Size (KiB)

C
yc
le
s
/
It
er
at
io
n

Figure 3: Access Times for Sequential Reads

5.3.1 Temporal Locality

One access suggests another. That is, once referenced memory locations tend to be used
again within a short time frame. This is really the intrinsic motivation for having a
memory hierarchy in the first place. When a cache line is loaded but not accessed again
before being evicted, the cache provided no benefit.

5.3.2 Spatial Locality

1. For each accessed memory location, nearby locations are used as well within a short
time frame. 2. Memory is accessed sequentially. We have already seen in the last two
sections that caches take advantage of both these principles by design:

1. Data is loaded in blocks; subsequent accesses to locations in an already loaded
cache line are basically free.

2. Cache lines from sequential access patterns are prefetched ahead of time.

5.3.3 Notes

Access to instructions inherently has good spatial locality [3, p. 31] since they are executed
sequentially outside of jumps, and good temporal locality because of loops and function
calls [3, p. 14]. Programs with good locality are said to be cache-friendly.

6 Example: std::vector vs. std::list

The C++ program shown in listing 3, adapted from Ignatchenko [9], initializes a number
of STL containers with random numbers and measures the processor time needed to

9

sum all of them. I first ran it with Container being a type alias for std::list, then for
std::vector.12 Either way, the asymptotic complexity is Θ(N).

constexpr int N = 5000;

int main() {
Container containers[N];
std::srand(std::time(nullptr));
// Append an average of 5000 random values to each container.
for (int i = 0; i < N * 5000; ++i) {

containers[std::rand() % N].push_back(std::rand());
}

int sum = 0;
std::clock_t t0 = std::clock();
for (int m = 0; m < N; ++m) {

for (int num : containers[m]) {
sum += num;

}
}
std::clock_t t1 = std::clock();

// Also print the sum so the loop doesn't get optimized out.
std::cout << sum << '\n' << (t1 - t0) << '\n';

}

Listing 3: Compute the Sum of a Container; adapted from Ignatchenko [9]

My result is that computing the sum runs 158 times faster when using std::vector.
Some of this difference can be attributed to space overhead of the linked list and the
added indirection, but the more cache-friendly memory access pattern of std::vector
is decisive [9, pp. 5 sq.]. Using std::list incurs “random access to memory” in this
example [9, p. 6].

6.1 Notes
6.1.1 “True” OO Style

In object-oriented (OO) systems, variables are typically referred to by pointers to a
common base class. A polymorphic container of such pointers allows for dynamic dispatch
of virtual functions. However, this carries the risk of degrading the performance of a
sequential data structure to that of a list [16, 51:22]. See fig. 4.

12Each compiled with and -O3 and -march=native

10

0 1 2 3 4 5 6 7

Figure 4: Array of Pointers; the array is compact but the actual objects may be
scattered across memory pretty randomly.

7 Abstract?
We have seen that the hidden constant separating the time complexities of two reasonable
algorithms under asymptotic analysis can get quite big in the presence of a memory
hierarchy. To escape having to rely only on empirical results, abstract machine models
taking the non-uniform memories of real-world computers into account can be used. One
of these is the external memory model (EMM).

7.1 External Memory Model
The EMM is an extension of the random access machine (RAM) model. While the latter
assumes “a ‘sufficiently’ large uniform memory” [12, p. 5] with a constant access time, the
EMM divides the memory into internal and external. The internal memory is accessed
directly, but its size is limited to M items. The external memory is unbounded, but can
only be accessed indirectly by loading data into internal memory “using I/Os that move
B contiguous [items]” [12, p. 5].
The use of the term I/O here is somewhat non-standard. While it suggests external

memory represents an HDD or SSD, it is not constrained which physical storages are
associated with internal and external memory. If we choose the set of all CPU caches
and the main memory, B becomes the cache line size and M may be in the order of a
few MiB.

The number of I/Os an algorithm requires in the EMM can augment the information
provided by standard asymptotic complexity analysis, but is no substitute for measure-
ments. For example, the lower bound of I/Os needed for computing the sum of some
input of size N , like in listing 3, is (dN/Be+ 1) in the EMM.13 The linked list in that
example probably takes almost N I/Os, though, since consecutive nodes are unlikely
to fall into the same cache line. Thus, the predicted performance difference between
std::vector and std::list is at most B, the number of items a cache line can hold,
which is 16 in this case.14 Recalling that the measured performance difference was 158,
this is pretty inaccurate, but more informative than saying both data structure’s time
complexities for traversal are Θ(N).

Even with the simplifications made by the EMM, algorithmic analysis is usually only

13The data could occupy a small amount of a cache line at its start and end.
14A cache line is 64 bytes on my laptop’s CPU and an int 4 bytes with my compiler.

11

done asymptotically: the number of I/Os is expressed in terms of O (f (N, M, B)) or one
of the related symbols. Theoretical lower bounds of the I/Os needed in the EMM are
available in the literature (for example [12]) for many problems.

7.1.1 Limitations

While the concept of I/Os directly models cache lines, most other characteristics of
memory hierarchies are ignored by the EMM. For example:

• prefetching, or more generally the advantages of sequential access patterns,
• multi-level caches,
• the lack of direct control over the contents of caches,
• associativity,15

• TLB.

More fundamentally, the model’s premise is that I/Os are much more expensive than
computation [12, p. 188]. While this is plausible when accessing HDDs, it doesn’t apply
to data transfer between main memory and caches to nearly the same extent. Some
of these shortcomings are addressed by refined machine models, which include more
details of real caches [12, p. 178]. This complicates mathematical analysis [12, p. 181] and
heuristics may be used [12, p. 191], which in turn exacerbates the need for accompanying
measurements [12, p. 181].

7.2 Cache-Oblivious Model
The cache-oblivious model (COM) or ideal-cache model, introduced by Frigo et al. [4],
concedes most of the aforementioned problems to empirical evaluation and further
increases the level of abstraction. Algorithms for the COM, called cache-oblivious
algorithms, are designed without the cache size M or block size B as parameters. This
seems silly since these values typically can be queried easily at both run and compile
time [3, p. 50] but, perhaps counterintuitively, models one aspect of memory hierarchies
better than the EMM. An algorithm that performs well in the COM performs well
across the entire memory hierarchy [12, pp. 194 sq., 2, p. 4]; the same argument for data
movement being optimal applies between any two levels of memory [5, lemma 15, p. 10].

Optimal means that the asymptotic [5, p. 2] number of cache misses incurred matches
the problem’s lower bound in the COM.

Cache misses take the place of I/Os because cache-oblivious algorithms don’t manage
the cache explicitly. This wouldn’t be possible since the algorithms know neither the
cache nor the cache line size [2, p. 5]. Instead, the COM uses the optimal replacement
strategy of evicting the cache line that won’t be accessed for the longest time in the
future (Bélády’s Algorithm). This is strangely at odds with real-world caches that don’t
know the future. However, Prokop proves that for many algorithms16 cache misses only

15Associativity is not discussed in this paper; see Drepper [3] instead.
16Those satisfying equation (7.1) in [15, p. 46]. If the number of cache misses incurred by the algorithm

only “depends polynomially on the cache size M”, the equation is satisfied [2, p. 6].

12

increase by a constant factor when switching to a feasible replacement strategy [15,
corollary 19, p. 46].17

Prokop further justifies the model by proving, “with only minor assumptions” [15,
p. 12], that cache-oblivious algorithms that are optimal in the COM can by executed with
an optimal amount of I/Os in the EMM [15, theorem 32, p. 56]. In other words, most
cache-oblivious algorithms can be systematically transformed into cache-aware algorithms
that asymptotically require the same amount of memory transfers in the EMM as the
cache-oblivious variant in the COM.

7.2.1 Cache-Oblivious Matrix Transposition

The straightforward way to transpose an m×n matrix D out-of-place is to use two loops
like so:

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

E[j][i] = D[i][j];

Assuming D and E are stored in row-major layout (as they would be in the C and C++
languages), the reads from D are sequential memory accesses but the writes to E are not.
When DT has sufficiently long rows (m > B)18, every consecutive access will be to a

different cache line. If it has sufficiently many rows, the constant amount of lines that
are still kept in cache by the optimal replacement strategy once the inner loop completes
and we need them again becomes negligible. Therefore, this algorithm incurs Θ(mn)
cache misses.

The algorithm is by definition already cache-oblivious since it doesn’t use M or B, but
it is not optimal. We can do better with a divide-and-conquer approach. The idea is to
recursively divide the input matrix D into two equal-sized submatrices along the greater
dimension. If m ≥ n (more rows than columns), let

D =
[
D1
D2

]

and use DT =
[
DT

1 DT
2

]
to compute the transpose. If m < n, analogously slice D

vertically. Eventually, the submatrices will become small enough so that pairs of input
and output submatrices fit into cache at the same time, at which point it doesn’t matter
in what order we access the elements.19 The recursion continues all the way down to 1×1
submatrices, but this doesn’t change the theoretical analysis. According to Prokop [15,
theorem 2 and 3, pp. 19–21] this algorithm incurs an optimal amount of Θ(1 + mn/B)
cache misses. Listing 4 shows my implementation in C.

17e.g. LRU, FIFO, and random replacement
18DT will be an n × m matrix, so m is its number of columns.
19No cache line will have to be evicted once loaded.

13

// Transpose the submatrix (dij)i∈I, j∈J.
void transpose(int I[2], int J[2], int D[m][n], int E[n][m]) {

int num_rows = 1 + I[1] - I[0];
int num_cols = 1 + J[1] - J[0];
if (num_cols == 1 && num_rows == 1) {

E[J[0]][I[0]] = D[I[0]][J[0]];
} else if (num_cols <= num_rows) {

// Horizontally slice D into two submatrices and recurse.
transpose((int[2]){I[0], I[0] + num_rows / 2 - 1}, J, D, E);
transpose((int[2]){I[0] + num_rows / 2, I[1]}, J, D, E);

} else { /* Vertically slice D analogously... */ }
}

Listing 4: COM-Optimal Matrix Transposition

In practice, the new algorithm performs worse than the straightforward one for a lot
of matrix sizes before it eventually pulls ahead. Figure 5 gives the speedups for square
matrices of various sizes. The problem may be the excessive use of recursion.

Kumar works around this by “[stopping] the recursion when the problem size becomes
less than a certain block size and then [using] the simple for loop implementation inside
the block” [12, pp. 199–201]. This seems to compromise the cache-obliviousness of the
algorithm. Perhaps cache-oblivious algorithms should be seen as a starting point for
further optimizations that explicitly use the available information about the memory
hierarchy of the machine a program runs on.

14

1 2 4 8 16 32 64 128 256 512 1024
0

0.25

0.5

0.75

1

1.25

1.5

Matrix Size (MiB)

Sp
ee
du

p

Figure 5: Speedup Achieved by COM-Optimal Matrix Transposition; the CPU
time used by the straightforward matrix transposition algorithm di-
vided by that used by the optimal one

15

A Reading Information About the CPU
There are many ways to display information about the processor(s) the operating sys-
tem is running on. Among others, the lscpu(1) and getconf(1) programs and the
/proc/cpuinfo pseudo-file on Linux. This is how I checked my CPU’s cache sizes, for
example:

$ lscpu | grep 'L1d\|L2'
L1d cache: 32K
L2 cache: 512K

This is what I used to get the cache line sizes:

$ getconf LEVEL1_DCACHE_LINESIZE; getconf LEVEL2_CACHE_LINESIZE
64
64

B Profiling Methodology
All programs were compiled and run on Linux using the GNU Compiler Collection
(GCC)20 with -O2 or -O3 and -march=native. I disabled CPU frequency scaling with
cpupower(1), reduced the number of running processes,21 and assigned a high priority
to the benchmark process with the chrt(1) command.

The makefile used to compile and run the measurements as well as the full source code
of the programs is available at https://github.com/meribold/cache-seminar-paper.

B.1 Measuring CPU cycles
I used the ocount(1) event counting tool added to the OProfile [11] project in version
0.9.9. It uses hardware performance counters22 to provide low-overhead performance
information without source code modifications. Essentially, this is the procedure:

$ gcc -march=native -O2 program.c
cpupower frequency-set -g performance
chrt -f 99 ocount -e CPU_CLK_UNHALTED ./a.out

20in version 6.3.1
21I stopped Firefox (which added visible noise) and the X server, for example.
22https://en.wikipedia.org/wiki/Hardware_performance_counter

16

https://github.com/meribold/cache-seminar-paper/blob/master/makefile
https://github.com/meribold/cache-seminar-paper
https://en.wikipedia.org/wiki/Hardware_performance_counter

C Data

Array Size (KiB) Cycles / Iteration Array Size (KiB) Cycles / Iteration
1 3.01 512 27.23
2 3.01 1024 117.28
4 3.01 2048 157.85
8 3.01 4096 174.74

16 3.01 8192 183.54
32 3.46 16 384 188.00
64 15.34 32 768 191.39

128 18.85 65 536 193.95
256 24.73 131 072 194.83

Table 1: Access Times for Random Reads

Array Size (KiB) Cycles / Iteration Array Size (KiB) Cycles / Iteration
1 3.01 512 5.15
2 3.01 1024 6.17
4 3.01 2048 6.20
8 3.01 4096 6.16

16 3.01 8192 6.14
32 3.05 16 384 6.16
64 3.99 32 768 6.13

128 3.98 65 536 6.13
256 3.94 131 072 6.14

Table 2: Access Times for Sequential Reads

17

2 8 128 2048 8192 32 768 131 07232 512
0

5

10

15

20

Array Size (KiB)

C
yc
le
s
/
It
er
at
io
n

Figure 6: CPU-Bound Sequential Read Access

18

Acronyms
COM cache-oblivious model. 1, 12–15

EMM external memory model. 1, 11–13

GCC GNU Compiler Collection. 16

HDD hard disk drive. 3, 11, 12

I/O input/output operation. 11–13

OO object-oriented. 10

RAM random access machine. 11

SSD solid-state drive. 3, 11
STL Standard Template Library. 9

TLB translation lookaside buffer. 4, 12

References
[1] BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 14h Models 00h-0Fh

Processors. Version 3.13. AMD. 2012-02-17. 470 pp. url: https://support.amd.
com/TechDocs/43170_14h_Mod_00h-0Fh_BKDG.pdf.

[2] Erik D. Demaine. “Cache-Oblivious Algorithms and Data Structures”. In: Lecture
Notes from the EEF Summer School on Massive Data Sets. BRICS, University
of Aarhus, Denmark, 2002-06-27/2002-07-01. url: http://erikdemaine.org/
papers/BRICS2002/ (visited on 2017-06-16).

[3] Ulrich Drepper. What Every Programmer Should Know About Memory. Ed. by
Jonathan Corbet. 2007-11-21. 114 pp. url: https : / / people . redhat . com /
drepper/cpumemory.pdf (visited on 2017-05-15).

[4] Matteo Frigo et al. “Cache-Oblivious Algorithms. Extended abstract submitted for
publication”. 1999-05.

[5] Matteo Frigo et al. “Cache-Oblivious Algorithms”. In: 40th Annual Symposium on
Foundations of Computer Science. IEEE. 1999-10-17/1999-10-19, pp. 285–297. doi:
10.1109/SFFCS.1999.814600.

[6] Glenn Hinton et al. “The Microarchitecture of the Pentium® 4 Processor”. In: Intel
Technology Journal 5.1 (Q1 2001). url: http://www.ecs.umass.edu/ece/koren/
ece568/papers/Pentium4.pdf (visited on 2017-05-13).

[7] Sergey Ignatchenko. C++ for Games: Performance, Allocations and Data Locality.
2016-05-23. url: http://ithare.com/c-for-games-performance-allocations-
and-data-locality/ (visited on 2017-05-11).

19

https://support.amd.com/TechDocs/43170_14h_Mod_00h-0Fh_BKDG.pdf
https://support.amd.com/TechDocs/43170_14h_Mod_00h-0Fh_BKDG.pdf
http://erikdemaine.org/papers/BRICS2002/
http://erikdemaine.org/papers/BRICS2002/
https://people.redhat.com/drepper/cpumemory.pdf
https://people.redhat.com/drepper/cpumemory.pdf
https://doi.org/10.1109/SFFCS.1999.814600
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf
http://ithare.com/c-for-games-performance-allocations-and-data-locality/
http://ithare.com/c-for-games-performance-allocations-and-data-locality/

[8] Sergey Ignatchenko. Infographics: Operation Costs in CPU Clock Cycles. 2016-09-
12. url: http://ithare.com/infographics-operation-costs-in-cpu-clock-
cycles/ (visited on 2017-05-19).

[9] Sergey Ignatchenko. “Some Big-Os are Bigger Than Others”. In: Overload 134
(2016-08). Big-O notation is often used to compare algorithms. Sergey Ignatchenko
reminds us that asymptotic limits might not be generally applicable., pp. 4–7. issn:
1354–3172. url: https://accu.org/var/uploads/journals/Overload134.pdf#
page=6 (visited on 2017-05-11).

[10] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel. 2016-06.
672 pp. url: https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[11] John Levon et al. OProfile. Comp. software. Version 1.1.0. 2015-08-03. url: http:
//oprofile.sourceforge.net.

[12] Ulrich Meyer, Peter Sanders, and Jop Sibeyn, eds. Algorithms for Memory Hierar-
chies. Advanced Lectures. Lecture Notes in Computer Science. Berlin and Heidelberg:
Springer-Verlag, 2003. isbn: 3-540-00883-7.

[13] Scott Meyers. “CPU Caches and Why You Care”. Talk given at the code::dive
conference. http://codedive.pl/index/year2014. Hala Stulecia, Wrocław,
Poland, 2014-11-05. url: https://youtu.be/WDIkqP4JbkE (visited on 2017-05-
13).

[14] Igor Ostrovsky. Gallery of Processor Cache Effects. 2010-01-19. url: https://
igoro.com/archive/gallery-of-processor-cache-effects/ (visited on 2017-
05-15).

[15] Harald Prokop. “Cache-Oblivious Algorithms”. MA thesis. Massachusetts Institute
of Technology, 1999-06. url: http : / / supertech . csail . mit . edu / papers /
Prokop99.pdf (visited on 2017-06-16).

[16] Bjarne Stroustrup. C++11 Style. Talk given at the GoingNative 2012 conference.
Redmond, WA, USA: Microsoft, 2012-02-02. url: https : / / channel9 . msdn .
com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-
Cpp11-Style (visited on 2017-06-19).

[17] The “Zen” Core Architecture. AMD. url: https : / / www . amd . com / en - gb /
innovations/software-technologies/zen-cpu#Microarchitecture (visited
on 2017-05-19).

20

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
https://accu.org/var/uploads/journals/Overload134.pdf#page=6
https://accu.org/var/uploads/journals/Overload134.pdf#page=6
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net
http://codedive.pl/index/year2014
https://youtu.be/WDIkqP4JbkE
https://igoro.com/archive/gallery-of-processor-cache-effects/
https://igoro.com/archive/gallery-of-processor-cache-effects/
http://supertech.csail.mit.edu/papers/Prokop99.pdf
http://supertech.csail.mit.edu/papers/Prokop99.pdf
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
https://www.amd.com/en-gb/innovations/software-technologies/zen-cpu#Microarchitecture
https://www.amd.com/en-gb/innovations/software-technologies/zen-cpu#Microarchitecture

	Introduction
	Motivation
	Cache Operation Overview
	Types of CPU Caches
	Key Concepts
	Cache Line
	Prefetching
	Locality of Reference
	Temporal Locality
	Spatial Locality
	Notes

	Example: std::vector vs. std::list
	Notes
	``True'' OO Style

	Abstract?
	External Memory Model
	Limitations

	Cache-Oblivious Model
	Cache-Oblivious Matrix Transposition

	Appendix Reading Information About the CPU
	Appendix Profiling Methodology
	Measuring CPU cycles

	Appendix Data
	Acronyms
	References

